Post

PyTorch

PyTorch

PyTorch相关笔记

输出大小计算

卷积层

1
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)

输入大小为$W \times H \times D$(宽度、高度和深度),卷积核大小为$K_w \times K_h$ ,步幅(stride)为$S_w$和$S_h$,填充(padding)为$P_w$和$P_h$,输出深度(输出通道数)为$D_{out}$

  • 输出宽度$W_{out}$:
    \(W_{out} = \left\lfloor \frac{W - K_w + 2P_w}{S_w} \right\rfloor + 1\)

  • 输出高度$H_{out}$:
    \(H_{out} = \left\lfloor \frac{H - K_h + 2P_h}{S_h} \right\rfloor + 1\)

  • 输出深度$D_{out}$等于卷积核的个数(输出通道数)

池化层

最大值池化

1
nn.MaxPool2d(kernel_size, stride, padding, dilation)

输入大小为$W \times H \times D$(宽度、高度和深度),卷积核大小为$K_w \times K_h$ ,步幅(stride)为$S_w$和$S_h$,填充(padding)为$P_w$和$P_h$,膨胀(dilation)为$D_w$和$D_h$

  • 输出宽度$W_{out}$:
    \(W_{out} = \left\lfloor \frac{W + 2P_w - D_w \cdot (K_w - 1) - 1}{S_w} \right\rfloor + 1\)

  • 输出高度$H_{out}$:
    \(H_{out} = \left\lfloor \frac{H + 2P_h - D_h \cdot (K_h - 1) - 1}{S_h} \right\rfloor + 1\)

  • 输出深度$D_{out}$等于输入深度$D$

平均值池化

1
nn.AvgPool2d(kernel_size, stride, padding)

输入大小为$W \times H \times D$(宽度、高度和深度),卷积核大小为$K_w \times K_h$ ,步幅(stride)为$S_w$和$S_h$,填充(padding)为$P_w$和$P_h$

  • 输出宽度$W_{out}$:
    \(W_{out} = \left\lfloor \frac{W + 2P_w - K_w}{S_w} \right\rfloor + 1\)

  • 输出高度$H_{out}$:
    \(H_{out} = \left\lfloor \frac{H + 2P_h - K_h}{S_h} \right\rfloor + 1\)

  • 输出深度$D_{out}$等于输入深度$D$

自适应最大值池化

1
nn.AdaptiveAvgPool2d(output_size)

输入大小为$W \times H \times D$(宽度、高度和深度),目标输出大小为$W_{out} \times H_{out} \times D_{out}$

  • 输出宽度$W_{out}等于指定的目标宽度

  • 输出高度$H_{out}等于指定的目标高度

  • 输出深度$D_{out}$等于输入深度$D$

This post is licensed under CC BY 4.0 by the author.